GENERAL MOMENTS OF MATRIX ELEMENTS FROM CIRCULAR ORTHOGONAL ENSEMBLES

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moments of Traces for Circular Beta-ensembles

Abstract Let θ1, · · · , θn be random variables from Dyson’s circular β-ensemble with probability density function Const · 1≤j 0, we obtain some inequalities on E [ pμ(Zn)pν(Zn) ] , where Zn = (e1 , · · · , en) and pμ is the power-sum symmetric function for partition μ. When β = 2, our inequalities recover an identity by Diaconis and Evans for Haar-inv...

متن کامل

The Entries of Circular Orthogonal Ensembles

Let V = (vij)n×n be a circular orthogonal ensemble. In this paper, for 1 ≤ m ≤ o( √ n/ log n), we give a bound for the tail probability of max1≤i,j≤m |vij − (1/n)y′ iyj |, where Y = (y1, · · · ,yn) is a certain n×n matrix whose entries are independent and identically distributed random variables with the standard complex normal distribution CN(0, 1). In particular, this implies that, for a sequ...

متن کامل

Matrix measures, random moments and Gaussian ensembles

We consider the moment space Mn corresponding to p × p real or complex matrix measures defined on the interval [0, 1]. The asymptotic properties of the first k components of a uniformly distributed vector (S1,n, . . . , Sn,n) ∗ ∼ U(Mn) are studied if n → ∞. In particular, it is shown that an appropriately centered and standardized version of the vector (S1,n, . . . , Sk,n) ∗ converges weakly to...

متن کامل

On Orthogonal and Symplectic Matrix Ensembles

The focus of this paper is on the probability, Eβ(Q; J), that a set J consisting of a finite union of intervals contains no eigenvalues for the finite N Gaussian Orthogonal (β = 1) and Gaussian Symplectic (β = 4) Ensembles and their respective scaling limits both in the bulk and at the edge of the spectrum. We show how these probabilities can be expressed in terms of quantities arising in the c...

متن کامل

On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles

For the unitary ensembles of N × N Hermitian matrices associated with a weight function w there is a kernel, expressible in terms of the polynomials orthogonal with respect to the weight function, which plays an important role. For the orthogonal and symplectic ensembles of Hermitian matrices there are 2 × 2 matrix kernels, usually constructed using skew-orthogonal polynomials, which play an an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Random Matrices: Theory and Applications

سال: 2012

ISSN: 2010-3263,2010-3271

DOI: 10.1142/s2010326312500050